DeepMind新论文:AI 算法“进化”出人脑模式,具备超越人类的方向感

    美国当地时间 5 月 9 日,英国 Deep Mind 团队与 University College London(UCL)在世界顶级学术杂志《Nature》上发表了一篇论文,震动了学界。这篇论文标题为 Vector-based navigation using grid-like representations in artificial agents,在这项研究中,研究团队通过深度学习方法,来训练计算机模拟大鼠在虚拟环境下追踪自己的位置,结果显示人工智能程序具有类似哺乳动物一样的寻路能力,非常类似大脑中网格细胞的工作原理。

    神秘的网格细胞:大脑内置 GPS

    从家出发到新的地点,再原路返回,从中选择尽可能的捷径,这是绝大多数动物都能胜任的简单任务。然而,大脑这种本能的导航机制尚未被完全理解。

    科学家们在动物和人类大脑中找到了三种跟认路相关的细胞,分别是位置细胞、方向细胞和网格细胞(grid cell)。

    位置细胞能在主体到达特定地点时放电,从而赋予对过往地点的记忆;方向细胞能感应前进的方向;网格细胞则是最神秘的一种:它们能将整个空间环境划分成蜂窝状的六边形网格,仿佛地图上的坐标系。

    发现网格细胞的的Edvard Moser 莫索尔夫妇因此获得了 2014 年的诺贝尔生理学或医学奖。不过,网格细胞仅仅是在空间环境中提供 GPS 定位服务吗?一些科学家猜测,它们也会参与矢量计算,辅助动物规划路径。

    人工神经网络中自动出现类似结构

    DeepMind 团队决定用人工神经网络检验上述猜想。人工神经网络是一种利用多层处理模拟大脑神经网络的运算结构。团队首先用深度学习算法训练神经网络学习哺乳动物的觅食运动路径,利用线速度、角速度等信号在视觉环境中进行定位。

    研究人员随后发现,一种类似于网格细胞活动特征的结构自动诞生了!在此前的训练中,研究人员并未刻意引导神经网络产生此种结构。

    artificial
    图丨研究人员使用AI得到的“网格单元”与哺乳动物觅食状态下的“网格细胞”在模式上高度相似

    这再次显示了深度学习的可喜又可畏之处:这是一种通过大量匹配的输入和输出值训练机器自我摸索的算法,最后得到的机器逻辑是不为人知的黑匣子。

    迷宫寻路

    DeepMind 团队随后利用强化学习检验这种网格结构是否能够进行矢量导航。强化学习被普遍用于训练游戏 AI,人类告诉 AI 一种游戏的得分奖惩机制,但却不教授游戏方法,由 AI 在反复进行游戏、努力争取更高分的过程中自我进化。后期的 AlphaGo 就完全摈弃了人类棋谱经验,在纯粹的自我对弈中从零进化到更强版本。

    本次发表的研究成果是基于深度学习神经网络,对神经科学理论假设的一次测试,即大脑能通过网格神经来整合自身速度、方向等身体动作先关信息,从而实现在环境中的定位。

    首先,作者通过模拟虚拟的大鼠在其所在地附近觅食的移动路径,再加上模拟啮齿类动物活动区域与其头向细胞活动,以此生成数据来训练算法。但这还不是所谓的网格细胞的活动,科学家使用这些生产的数据进一步训练深度网络学习网络模型,进而识别感知虚拟大鼠所在的位置,而科学家在此中发现,在计算单元中出现了网格状活动的六角形模式,与实验室中真实大鼠大脑里的状况一样。

    此一研究的共同作者伦敦大学的神经科学家 Caswell Barry 表示,在研究启动时,的确期待看到这些网格活动的出现,但当实际亲眼目睹,却还是十分让人惊讶。在 Caswell Barry 长年的神经科学研究历程中,曾经多次看到网格活动的出现,他清楚知道网格活动呈现出的规律性。

    而科学家紧接着对于调整系统进而增加一些人为的噪音干扰感到兴趣,科学家希望借此让神经网络单元也与实际大脑环境更加类似,进而刺激网格活动的出现。Herz 表示,这是所有理论神经科学家一直都在思考研究的题目,但确始终无从着手进行测试。

    但这样的测试如今却可通过 AI 进行,研究人员通过测试系统,测试虚拟大鼠可否利用此一系统进行导航定位。研究人员将用以模拟此一活动的虚拟大鼠放在一个设计成迷宫的模型中,训练这只虚拟大鼠学会走向特定的目标,而研究者在整个实验系统中添加了学习所需要的记忆与奖励机制,经营这个程序的设计添加,模拟大鼠通过反复试验很快就找到该去的位置,而且逐渐变得熟门熟路,与同样尝试进行相同测试的人类科学家相比,这些模拟大鼠的表现甚至于远远超过人类。

    ai

    图丨网格单元导航能力演示。圆形代表网格单元的数量多少,着色则表示网格单元活跃。AI目标移动时,一些网格单元活跃,并计算到达目的地的最短路径。

    而且值得注意的是,在过程中研究人员也发现,如果刻意干扰阻止网格细胞的形成,模拟大鼠就无法在迷宫中行走达任务。同时 Barry 表示,在实验室中真实大鼠身上关闭网格细胞并不可能做到。

    而 DeepMind 研究人员、同时也是此一论文的共同作者 Andrea Banino 表示,“尽管 DeepMind 通过与神经科学家合作,激发出全新的人工智能研究突破,但到目前为止,这仍然停留在纯粹 AI 算法的基础研究阶段,并不是真正可以导入应用的研究结果。”

    有趣的是,从更宏观的角度来看,这个网络是从非常一般性的计算假设开始,这个假设没有考虑到特定的生物学机制,而是找到了一个类似于大脑的路径集成的解决方案。这表明网格单元的活动模式有一些特殊的东西来支持的。然而,深度学习系统的黑盒(black-box)特征意味着很难确定那是什么东西。

    研究人员将之前自动出现的网格结构与一个更大型的神经网络架构结合成了人工智能体,置于虚拟现实的游戏环境中。经历强化学习后,该人工智能在游戏迷宫中向目的地前进的导航能力超越了一般人,达到了职业游戏玩家水平。它能像哺乳动物一样寻找新路线和抄近路。

    论文作者之一 Dharshan Kumaran 说道:“我们证明了网格细胞远不只是给我们提供 GPS 定位信号,也是一种大脑赖以计算两个地点间的最短距离的核心导航机制。”

    “这篇论文非常令人意外,简直是震撼!”来自挪威的神经科学家 Edvard Moser 如此评价。

    “这一成果是令人震惊的,因为来自完全不同维度的计算机模型,居然能重现我们在生物学中观察到的网格细胞模式。”Edvard Moser 进一步表示,“当然这也是一个令人欣喜的结果,至少说明了哺乳动物大脑在空间解码方面已经生成了一种最佳方式。”

    “如果能深入分析这一深度学习系统的内部工作方式应该是一件很有趣的事情,我们想知道研究团队是否发现了一种可以用空间导航的通用计算机准则。”来自德国慕尼黑大学的计算机神经科学家 Andreas Herz 表示。

    用人工智能代替小白鼠做实验

    与一直强调“人工智能不是仿生学”的 Facebook 人工智能首席科学家杨立昆(Yann Lecun)不同,天才创始人戴密斯·哈萨比斯(Demis Hassabis)执掌的 DeepMind 热衷探索人工智能与脑科学的相辅相成。这项研究再一次体现了他们的科学理念:脑科学启发下的人工智能算法能反过来帮助人类探索大脑运行机制,从而也更好地理解人工智能的内在逻辑。

    哈萨比斯评价道:“我们相信人工智能和神经科学是相互启发的。这项工作就是很好的证明:通过研发出一个能在复杂环境中导航的人工智能体,我们对网格细胞在哺乳动物导航中的重要性有了更深的理解。”

    DeepMind 团队相信,类似的研究方法还可以用来探索大脑听觉和控制四肢的机制。在更远的将来,神经科学家们甚至可以用人工智能代替小白鼠来做实验。

    论文网址:http://t.cn/R32YrKS


    <声明>
    文章仅代表作者观点,不代表智能链立场,智能链(www.zhinengl.com)也不对真实性背书。
    智能链尊重知识版权,遵循行业规范,转载稿件标明出处、版权归原作者或机构所有;如有侵权,请联系我们处理。
    智能链倡导知识分享,原创和编译文章(除非另有说明)欢迎转载,转载请注明出处、作者和原文链接。